

Cambridge IGCSE™

CANDIDATE
NAME

CENTRE
NUMBER

--	--	--	--	--

CANDIDATE
NUMBER

--	--	--	--

* 2 4 7 6 7 1 7 2 8 9 *

CHEMISTRY

0620/31

Paper 3 Theory (Core)

October/November 2023

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer **all** questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

This document has **20** pages. Any blank pages are indicated.

1 A list of substances is shown.

ammonium nitrate
carbon monoxide
copper(II) chloride
ethane
ethene
litmus
methane
methyl orange
sodium chloride
sodium sulfate
sulfur dioxide
thymolphthalein

Answer the following questions using only the substances from the list.
Each substance may be used once, more than once or not at all.

Give the name of the substance that:

(a) turns from blue to colourless when an acid is added

..... [1]

(b) is in many fertilisers

..... [1]

(c) is a salt which has a negative ion with a charge of 2-

..... [1]

(d) is a waste gas from digestion in animals

..... [1]

(e) is a hydrocarbon with a total of five atoms in a molecule

..... [1]

(f) is a compound of a transition element.

..... [1]

[Total: 6]

2 (a) Fig. 2.1 shows the distillation apparatus that can be used to separate water from aqueous copper(II) sulfate.

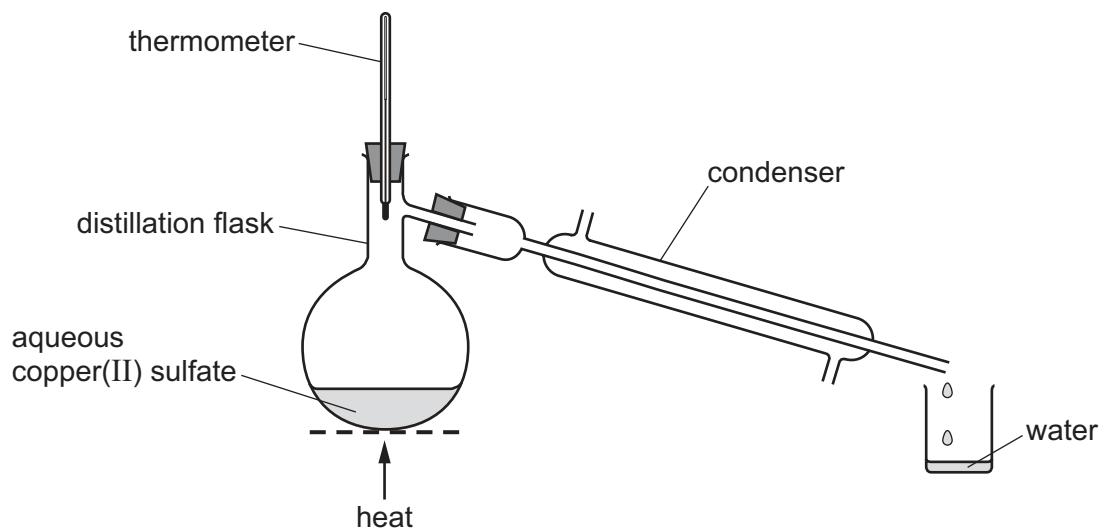
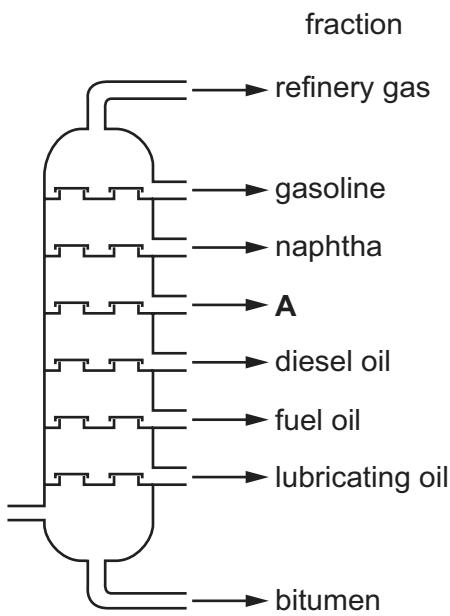


Fig. 2.1


Explain how distillation separates water from aqueous copper(II) sulfate.

.....

.....

[2]

(b) Fig. 2.2 shows a fractionating column for separating petroleum into different hydrocarbon fractions.

Fig. 2.2

(i) On Fig. 2.2, draw an **X** inside the column to show where the hydrocarbon with the highest viscosity collects. [1]

(ii) Name the fraction labelled **A** in Fig. 2.2.

..... [1]

(iii) State the name of the fraction in Fig. 2.2 which has the lowest boiling point.

..... [1]

(iv) State **one** use of the bitumen fraction.

..... [1]

[Total: 6]

3 (a) Table 3.1 shows the average concentrations, in ng/1000 cm³, of air pollutants in four different years.

Table 3.1

year	concentration of air pollutant in ng/1000 cm ³				
	ammonia	hydrocarbons	oxides of nitrogen	particulates	sulfur dioxide
2019	10.6	12.0	15.3	30.1	20.5
2020	11.2	13.0	21.6	28.2	20.0
2021	14.3	15.2	23.5	26.5	25.0
2022	15.5	9.0	14.0	25.2	18.2

(i) Name the pollutant that has the lowest concentration in 2019.

..... [1]

(ii) Name the pollutant that shows a continuous decrease in concentration from 2019 to 2022.

..... [1]

(iii) Calculate the average mass, in ng, of sulfur dioxide in a 250 cm³ sample of polluted air in 2020.

mass = ng [1]

(b) (i) State **one** source of sulfur dioxide in the atmosphere.

..... [1]

(ii) State **one** adverse effect of sulfur dioxide in the atmosphere.

..... [1]

(iii) Choose the compound used to remove sulfur dioxide in flue gas desulfurisation.

Tick (✓) **one** box.

aluminium chloride	<input type="checkbox"/>
calcium oxide	<input type="checkbox"/>
methane	<input type="checkbox"/>
sulfuric acid	<input type="checkbox"/>

[1]

(iv) Hydrochloric acid reacts with sodium sulfite.

The products are sodium chloride, sulfur dioxide and a liquid which turns anhydrous cobalt(II) chloride pink.

Complete the symbol equation for this reaction.

(v) Name the acidified solution used to test for sulfur dioxide gas and state the observations.

acidified solution

observations

[2]

(c) Ammonia forms an alkaline solution in water.

(i) Give the formula of the ion that is present in all alkaline solutions.

..... [1]

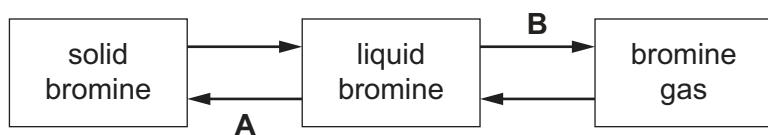
(ii) Choose from the list the pH value for an alkaline solution.

Draw a circle around your chosen answer.

pH 1 **pH 4** **pH 7** **pH 13** [1]

[Total: 12]

4 Bromine is a liquid at room temperature.


(a) State **two** general properties of a liquid.

1

2

[2]

(b) Fig. 4.1 shows the physical states of bromine.

Fig. 4.1

Name the changes of physical states **A** and **B**.

A

B

[2]

(c) Describe liquid bromine and bromine gas in terms of the arrangement and motion of the particles.

liquid bromine

arrangement

.....

bromine gas

arrangement

.....

motion

[4]

(d) A sealed gas syringe contains 80 cm^3 of bromine gas.

State how decreasing the pressure affects the volume of bromine gas in the gas syringe when the temperature remains constant.

..... [1]

[Total: 9]

5 This question is about metals and metal compounds.

(a) Table 5.1 shows some properties of some Group I metals.

Table 5.1

metal	melting point in °C	boiling point in °C	observations on reaction with water	solubility of metal hydroxide in g/dm ³ at room temperature
sodium	98	883	bubbles form rapidly but no flame	
potassium	63	760		1130
rubidium		686	explodes	1980
caesium	29	669	explodes	3860

Use the information in Table 5.1 to predict:

(i) the melting point of rubidium [1]

(ii) the solubility of sodium hydroxide at room temperature [1]

(iii) the observations when potassium reacts with water

..... [1]

(iv) the physical state of caesium at 20 °C. Give a reason for your answer.

physical state

reason

[2]

(b) Iron is extracted in a blast furnace by reduction of iron(III) oxide, Fe_2O_3 , with carbon monoxide.

Carbon monoxide is produced by the reaction of carbon with carbon dioxide.

(i) Explain how this equation shows that carbon dioxide is reduced.

.....
..... [1]

(ii) Name the type of chemical reaction where oxidation and reduction take place simultaneously.

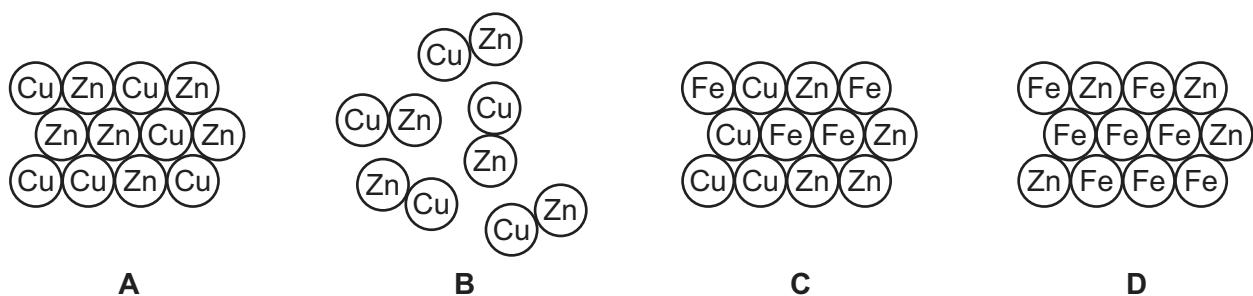
..... [1]

(iii) Calcium carbonate is added to the blast furnace.

The calcium carbonate undergoes thermal decomposition.

State the meaning of the term thermal decomposition.

.....
..... [2]


(c) Stainless steel is an alloy of iron.

(i) Give **one** reason why alloys are more useful than pure metals.

..... [1]

(ii) Brass is an alloy.

Choose the diagram, **A**, **B**, **C** or **D**, in Fig. 5.1 that best shows the structure of brass.

Fig. 5.1

diagram [1]

(d) Table 5.2 gives some observations about the reactivity of four metals with dilute hydrochloric acid.

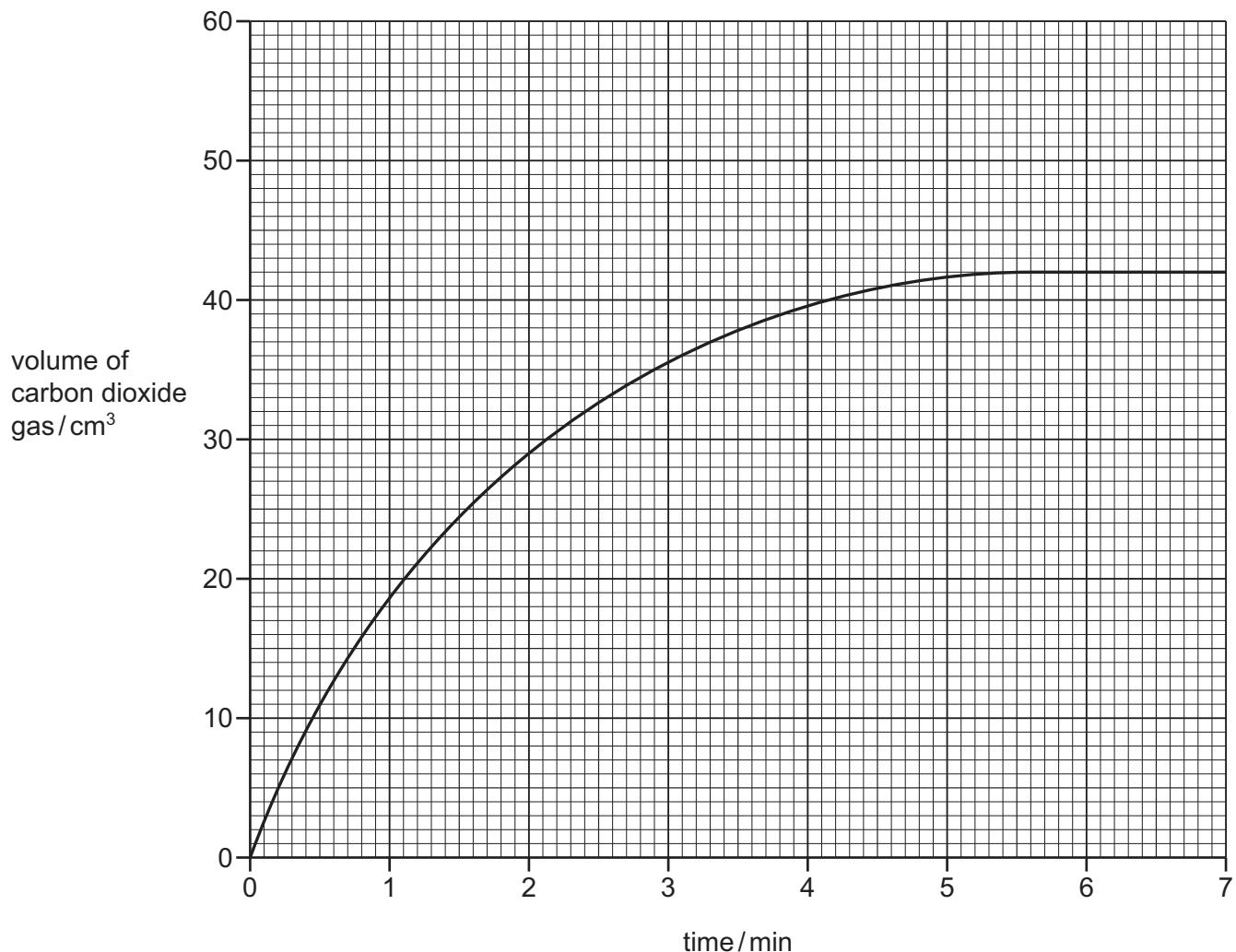
Table 5.2

metal	observations
iron	bubbles form slowly
magnesium	bubbles form very quickly
mercury	no bubbles form
tin	bubbles form very slowly

Put the four metals in order of their reactivity.

Put the least reactive metal first.

least reactive most reactive


<input type="text"/>	<input type="text"/>	<input type="text"/>	<input type="text"/>
----------------------	----------------------	----------------------	----------------------

[2]

[Total: 13]

6 A student investigates the reaction of large pieces of magnesium carbonate with dilute hydrochloric acid at 20 °C. The magnesium carbonate is in excess.

(a) Fig. 6.1 shows the volume of carbon dioxide gas released as the reaction proceeds.

Fig. 6.1

(i) Deduce the volume of carbon dioxide gas released after 2 minutes.

$$\text{volume of carbon dioxide} = \dots \text{cm}^3 \quad [1]$$

(ii) The student repeats the experiment using the same volume of hydrochloric acid but with a higher concentration. The magnesium carbonate is still in excess.

All other conditions stay the same.

Draw a line on the grid in Fig. 6.1 to show the volume of carbon dioxide released when hydrochloric acid with a higher concentration is used. [2]

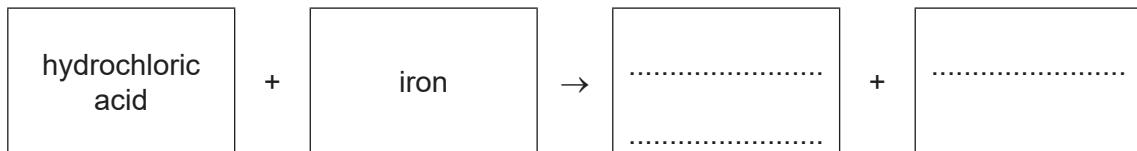
(b) (i) The student repeats the experiment using smaller pieces of magnesium carbonate.

All other conditions stay the same.

Describe how the rate of reaction differs when smaller pieces of magnesium carbonate are used.

..... [1]

(ii) The student repeats the experiment at 10 °C.


All other conditions stay the same.

Describe how the rate of reaction differs when the temperature is 10 °C.

..... [1]

(c) Hydrochloric acid reacts with iron.

Complete the word equation for this reaction.

[2]

(d) Acids are used as catalysts in many chemical reactions.

State the meaning of the term catalyst.

..... [2]

[Total: 9]

7 (a) Fig. 7.1 shows the displayed formula of compound **S**.

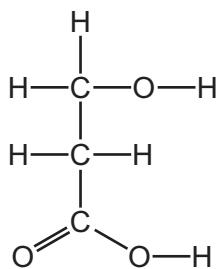


Fig. 7.1

(i) On Fig. 7.1, draw a circle around the carboxylic acid functional group. [1]

(ii) Deduce the molecular formula of compound **S**.

..... [1]

(b) Compound **S** can be converted to acrylic acid.
The molecular formula of acrylic acid is $C_3H_4O_2$.

(i) Complete Table 7.1 to calculate the relative molecular mass of acrylic acid.

Table 7.1

atom	number of atoms	relative atomic mass	
carbon	3	12	$3 \times 12 = 36$
hydrogen		1	
oxygen		16	

relative molecular mass = [2]

(ii) Acrylic acid is an unsaturated compound.

Describe a test for an unsaturated compound.

test

observations

[2]

(iii) When left in the air, acrylic acid forms a polymer.

State the meaning of the term polymer.

..... [2]

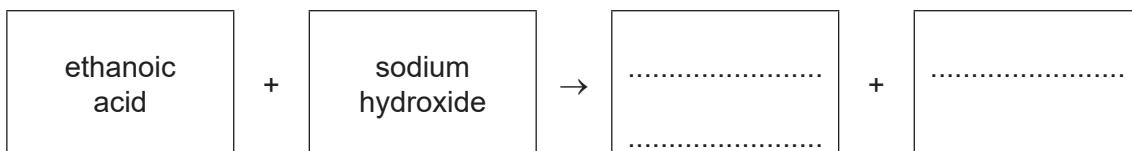
(iv) Poly(ethene) is also a polymer.

Choose from the list the type of polymerisation that occurs when poly(ethene) is made.

Draw a circle around your chosen answer.

substitution

oxidation


neutralisation

addition

[1]

(c) Ethanoic acid is a carboxylic acid.

Complete the word equation for the reaction of ethanoic acid with sodium hydroxide.

[2]

(d) Ethanoic acid can be converted to ethanol.

Name the **two** products formed when ethanol undergoes complete combustion.

..... and [2]

[Total: 13]

8 Lithium bromide is a compound with ionic bonding.

(a) State the meaning of the term ionic bond.

..... [2]

(b) Complete Fig. 8.1 to show:

- the electronic configuration of a lithium ion
- the charge on the ion.

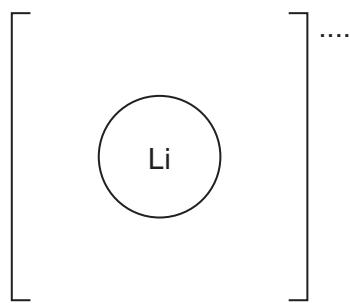


Fig. 8.1

[2]

(c) Deduce the number of protons and neutrons in the bromide ion shown.

number of protons

number of neutrons

[2]

(d) Molten lithium bromide is electrolysed using graphite electrodes.

State the names of the product at each electrode and give the observations at the positive electrode.

product at the negative electrode

product at the positive electrode

observations at the positive electrode

..... [3]

(e) Fig. 8.2 shows the structure of graphite.

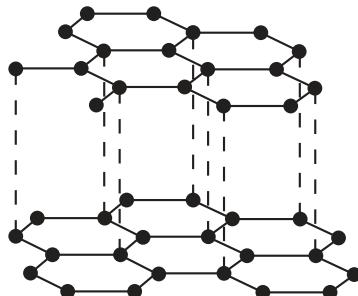


Fig. 8.2

(i) State the type of bonding in graphite.

..... [1]

(ii) Explain by referring to Fig. 8.2 why graphite is used as a lubricant.

..... [1]

(iii) Graphite and diamond are both forms of carbon.

State **one** use of diamond.

..... [1]

[Total: 12]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

Group		Group																		
		I		II		III		IV		V		VI		VII						
3	4	Li lithium 7	Be beryllium 9	Sc scandium 45	Ti titanium 48	V vanadium 51	Cr chromium 52	Mn manganese 55	Fe iron 56	Co cobalt 59	Ni nickel 59	Cu copper 64	Zn zinc 65	Ga gallium 70	Ge germanium 73	As arsenic 75	Se selenium 79	Br bromine 80	Kr krypton 84	
11	12	Na sodium 23	Mg magnesium 24	Ca calcium 40	Y yttrium 89	Zr zirconium 91	Nb niobium 93	Mo molybdenum 96	Tc technetium —	Ru ruthenium 101	Rh rhodium 103	Pd palladium 106	Ag silver 108	Cd cadmium 112	In indium 115	Sn tin 119	Te tellurium 122	I iodine 128	Xe xenon 131	
19	20	K potassium 39	Sr strontium 88	Rb rubidium 85	Yt yttrium 89	Zr zirconium 91	Nb niobium 93	Mo molybdenum 96	Tc technetium —	Ru ruthenium 101	Rh rhodium 103	Pt platinum 106	Au gold 197	Tl thallium 195	Pb lead 207	Bi bismuth 209	Po polonium —	At astatine —	Rn radon —	
37	38	Cs caesium 133	Ba barium 137	Fr francium —	La lanthanum 139	La lanthanum 139	Ce cerium 140	Pr praseodymium 141	Nd neodymium 144	Pm promethium —	Sm samarium 150	Eu europium 152	Gd gadolinium 157	Tb terbium 159	Dy dysprosium 163	Ho holmium 165	Er erbium 167	Tm thulium 169	Yb ytterbium 173	Lu lutetium 175
55	56	Ca calcium 133	La lanthanoid 57–71	Fr actinoid 89–103	Th thorium 232	Hf hafnium 178	Ta tantalum 181	W tungsten 184	Re rhodium 186	Os osmium 190	Ir iridium 192	Pt platinum 195	Au gold 197	Hg mercury 201	Tl thallium 204	Pb lead 207	Bi bismuth 209	Po polonium —	At astatine —	Rn radon —
87	88	Ra radium —	Rf rutherfordium —	Ac actinium —	Pa protactinium 231	Db dubnium —	Sg seaborgium —	Bh bohrium —	Mt meitnerium —	Ds darmstadtium —	Rg roentgenium —	Fm ferrovium —	Cn copernicium —	Nh nihonium —	Fl florium —	Mc moscovium —	Lv livmorium —	Ts tennessine —	Og oganesson —	

lanthanoids	57	58	Ce cerium 140	Pr praseodymium 141	Nd neodymium 144	Pm promethium —	Sm samarium 150	Eu europium 152	Gd gadolinium 157	Tb terbium 159	Dy dysprosium 163	Ho holmium 165	Er erbium 167	Tm thulium 169	Yb ytterbium 173	Lu lutetium 175
actinoids	89	90	Th thorium 232	Pa protactinium 231	U uranium 238	Np neptunium —	Am americium —	Pu plutonium —	Cm curium —	Bk berkelium —	Cf californium —	Fm fermium —	Md mendelevium —	No nobelium —	Lr lawrencium —	U —

The volume of one mole of any gas is 24 dm^3 at room temperature and pressure (r.t.p.).